若x、y滿足
0≤x≤2
0≤y≤2
x-y≥1
,則(x-1)2+(y-1)2的取值范圍是
 
分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件,畫出滿足約束條件的可行域,分析z=(x-1)2+(y-1)2表示的幾何意義,結(jié)合圖象即可給出z的最小值.
解答:精英家教網(wǎng)解析:約束條件是一個三角形區(qū)域,
而(x-1)2+(y-1)2表示以P(1,1)為圓心的圓,
從而最小值是點(1,1)到直線x-y=1的距離的平方,即
1
2
,
最大值為點(1,1)到點A(2,0)的距離的平方,即為2.
從而取值范圍是[
1
2
,2]

故答案為:[
1
2
,2]
點評:本題考查數(shù)形結(jié)合的數(shù)學(xué)思想,作出可行域,利用目標(biāo)函數(shù)f(x,y)的幾何意義求之.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足
0≤x≤2
0≤y≤2
x+y≥1
,則 x2+y2
的最小值是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩實數(shù)x,y滿足0≤x≤2,1≤y≤3.
(1)若x,y∈N,求使不等式2x-y+2>0成立的概率;
(2)若x,y∈R,求使不等式2x-y+2>0不成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩實數(shù)x,y滿足0≤x≤2,1≤y≤3.
(1)若x,y∈N,求使不等式2x-y+2>0成立的概率;
(2)若x,y∈R,求使不等式2x-y+2>0不成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市執(zhí)信中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知兩實數(shù)x,y滿足0≤x≤2,1≤y≤3.
(1)若x,y∈N,求使不等式2x-y+2>0成立的概率;
(2)若x,y∈R,求使不等式2x-y+2>0不成立的概率.

查看答案和解析>>

同步練習(xí)冊答案