已知函數(shù)f(x)=x3-3(a-1)x2-6ax,x∈R.,
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)a≥0時(shí),若函數(shù)f(x)在區(qū)間[-1,2]上是單調(diào)函數(shù),求a的取值范圍.
分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)大于0函數(shù)單調(diào)遞增,導(dǎo)數(shù)小于0時(shí)函數(shù)單調(diào)遞減可得答案.
(2)先確定函數(shù)f(x)兩個(gè)極值點(diǎn)的范圍,再由[-1,2]⊆[x1,x2]可得答案.
解答:解:(I)f'(x)=3x2-6(a-1)x-6a.
由f'(x)=0解得x1=-1+a-
a2+1
,x2=-1+a+
a2+1
.

當(dāng)x∈(-∞,x1)或x∈(x2,+∞)時(shí),f'(x)>0;
當(dāng)x∈(x1,x2)時(shí),f'(x)<0.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1+a-
a2+1
)和(-1+a+
a2+1
,+∞)

調(diào)遞減區(qū)間為(-1+a-
a2+1
,-1+a+
a2+1
).

(II)由a≥0,知x1=-1+a-
a2+1
=-1-(
a2+1
-a)<-1
,x2=-1+a+
a2+1
=a+(
a2+1
-1)>0
,
則函數(shù)f(x)在[-1,2]上是單調(diào)函數(shù)
當(dāng)且僅當(dāng)[-1,2]⊆[x1,x2],?(9分)
x2=a-1+
a2+1
≥2,解得a≥
4
3
.

故a的取值范圍是[
4
3
,+∞).
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案