已知函數(shù)f(x)=x3-3(a-1)x2-6ax,x∈R.,
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)a≥0時(shí),若函數(shù)f(x)在區(qū)間[-1,2]上是單調(diào)函數(shù),求a的取值范圍.
分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)大于0函數(shù)單調(diào)遞增,導(dǎo)數(shù)小于0時(shí)函數(shù)單調(diào)遞減可得答案.
(2)先確定函數(shù)f(x)兩個(gè)極值點(diǎn)的范圍,再由[-1,2]⊆[x1,x2]可得答案.
解答:解:(I)f'(x)=3x
2-6(a-1)x-6a.
由f'(x)=0解得
x1=-1+a-,
x2=-1+a+.當(dāng)x∈(-∞,x
1)或x∈(x
2,+∞)時(shí),f'(x)>0;
當(dāng)x∈(x
1,x
2)時(shí),f'(x)<0.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1+a-
)和
(-1+a+,+∞)調(diào)遞減區(qū)間為
(-1+a-,-1+a+).(II)由
a≥0,知x1=-1+a-=-1-(-a)<-1,
x2=-1+a+=a+(-1)>0,
則函數(shù)f(x)在[-1,2]上是單調(diào)函數(shù)
當(dāng)且僅當(dāng)[-1,2]⊆[x
1,x
2],?(9分)
即x2=a-1+≥2,解得a≥.故a的取值范圍是
[,+∞). 點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.