若關于x的不等式x2+
1
2
x-(
1
2
)n
≥0對任意n∈N*在x∈(-∞,λ]恒成立,則實常數(shù)λ的取值范圍是
(-∞,-1]
(-∞,-1]
分析:關于x的不等式x2+
1
2
x-(
1
2
)n
≥0對任意n∈N*在x∈(-∞,λ]恒成立,等價于x2+
1
2
x
(
1
2
)n
max
對任意n∈N*在x∈(-∞,λ]恒成立,由(
1
2
)n
max
=
1
2
,知x2+
1
2
x
1
2
對 x∈(-∞,λ]恒成立.由此能求出λ的范圍.
解答:解:關于x的不等式x2+
1
2
x-(
1
2
)n
≥0對任意n∈N*在x∈(-∞,λ]恒成立,
等價于x2+
1
2
x
(
1
2
)n
max
對任意n∈N*在x∈(-∞,λ]恒成立,
(
1
2
)n
max
=
1
2
,
x2+
1
2
x
1
2
對 x∈(-∞,λ]恒成立.
y=x2+
1
2
x
,它的圖象是開口向上,對稱軸為x=-
1
4
的拋物線,
∴當x≤-
1
4
時,左邊是單調減的,所以要使不等式恒成立,則λ2+
1
2
λ≥
1
2

解得λ≤-1,或λ≥
1
2
(舍)
當x>-
1
4
,左邊的最小值就是在x=-
1
4
時取到,
達到最小值時,x2+
1
2
x
=(-
1
4
)
2
+
1
2
•(-
1
4
) =-
1
16
,不滿足不等式.
因此λ的范圍就是 λ≤-1.
故答案為:(-∞,-1].
點評:本題考查函數(shù)恒成立問題的應用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、若關于x的不等式x2-4x≥m對任意x∈[-1,1]恒成立,則實數(shù)m的取值范圍是
(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式x2-px-q<0的解集為(2,3),則關于x的不等式qx2-px-1>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式x2-ax+1≤0,ax2+x-1>0均不成立,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式x2-2ax+a2-ab+4≤0恰有一個解,則a2+b2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義區(qū)間長度m為這樣的一個量:m的大小為區(qū)間 右端點的值減去左端點的值.若關于x的不等式x2-x-6a<0有解,且解集的區(qū)間長度不超過5個單位長,則a的取值范圍是(  )

查看答案和解析>>

同步練習冊答案