【答案】
分析:對選項中的函數(shù)分別進行求導(dǎo),研究它們的極值和單調(diào)性進行分析,對于A:求導(dǎo),由導(dǎo)數(shù)的符號知f(x)在(0,
)上單調(diào)遞減,且f(0)=0,故該函數(shù)在(0,
)上無零點,故錯;對于B:求導(dǎo),令導(dǎo)數(shù)等于零,求出該函數(shù)的極值點x
1,分析函數(shù)的單調(diào)性f(x)在(0,x
1)上單調(diào)遞增,在(
)上單調(diào)遞減,對于C:求導(dǎo),由導(dǎo)數(shù)的符號知f(x)在(0,
)上單調(diào)遞減,且f(0)=0,故該函數(shù)在(0,
)上無零點,故錯;對于D:求導(dǎo),求得函數(shù)的極值點,分析函數(shù)的單調(diào)性,可知該選項正確.
解答:解:對于A:f'(x)=cosx-1<0,x∈(0,
)
∴f(x)在(0,
)上單調(diào)遞減,且f(0)=0,故該函數(shù)在(0,
)上無零點,故錯;
對于B:令f′(x)=cosx-
=0,得x
1=arccos
,
當(dāng)0<x<x
1時,f′(x)>0,當(dāng)
時,f′(x)<0,
因此f(x)在(0,x
1)上單調(diào)遞增,在(
)上單調(diào)遞減,
而f(0)=0,f(
)=0,故該函數(shù)在(0,
)上無零點,故錯;
對于C:f′(x)=2sinxcosx-1=sin2x-1≤0,x∈(0,
)
∴f(x)在(0,
)上單調(diào)遞減,且f(0)=0,故該函數(shù)在(0,
)上無零點,故錯;
對于D:令f′(x)=2sinxcosx-
=sin2x-
=0,得x
1=arcsin
,或x
2=π-arcsin
,
當(dāng)0<x<x
1時,f′(x)<0,當(dāng)x
1<x<x
2時,f′(x)>0,當(dāng)
時,f′(x)<0,
因此f(x)在(0,x
1)上單調(diào)遞減,在(x
1,x
2)上單調(diào)遞增,在(
)上單調(diào)遞減,
而f(0)=0,f(
)=0,故該函數(shù)在(0,
)上有零點,故正確;
故選D.
點評:此題是個中檔題.考查函數(shù)的零點的判定定理,和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和計算能力.