4.已知${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,則a2=( 。
A.24B.56C.80D.216

分析 ${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,對(duì)兩邊兩次求導(dǎo),令x=2即可得出.

解答 解:∵${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,
兩邊求導(dǎo)可得:8(2x-3)3=a1+2a2(x-2)+3a3(x-2)2+4a4(x-2)3,
再一次求導(dǎo)可得:48(2x-3)2=2a2+6a3(x-2)+8a4(x-2)2,
令x=2,則a2=24.
故選:A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則、二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=x+cosx,x∈(0,1),則滿足不等式f(t2)>f(2t-1)的實(shí)數(shù)t的取值范圍是$\frac{1}{2}$<t<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={-1,1,2},B={0,1,2,7},則集合A∪B中元素的個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖是甲、乙兩名籃球運(yùn)動(dòng)員在五場比賽中所得分?jǐn)?shù)的莖葉圖,則在這五場比賽中得分較為穩(wěn)定(方差較。┑哪敲\(yùn)動(dòng)員的得分的方差為$\frac{34}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在三棱錐A-BCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且BD∥平面AEF.
(1)求證:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求證:平面AEF⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當(dāng)天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當(dāng)天工資.
(Ⅰ)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n210230250270300
頻數(shù)12331
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┰诋(dāng)天的收入不低于276元的條件下,求當(dāng)天雕刻量不低于270個(gè)的概率;
(ⅱ)若X表示雕刻師當(dāng)天的收入(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在數(shù)列{an}中,a1=2,an+1=an+2,Sn為{an}的前n項(xiàng)和,則S10=( 。
A.90B.100C.110D.130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.θ是第三象限的角.則( 。
A.cos$\frac{θ}{2}$>0           B.sin$\frac{θ}{2}$>0            C.tan$\frac{θ}{2}$>0            D.cot$\frac{θ}{2}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q=3,S3+S4=$\frac{53}{3}$,則a3=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案