已知橢圓C:+y2=1的右焦點為F,右準(zhǔn)線為l,點A∈l,線段AF交C于點B,若,則||=   
【答案】分析:先根據(jù) 推斷出 =,B點到直線L的距離設(shè)為BE,則利用橢圓方程中的a,b求得c,可求得||BF|,進(jìn)而求得|BE|,進(jìn)而根據(jù)橢圓的第二定義求得BF的長,則根據(jù) ,求得
解答:解:由條件,∵
=
B點到直線L的距離設(shè)為BE,則 =
∴|BE|=
根據(jù)橢圓定義e== 從而求出|BF|=
=×3=
故答案為:
點評:此題是中檔題.本題主要考查了橢圓的應(yīng)用.解題中靈活利用了橢圓的第二定義,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:選擇題

已知橢圓C: + y2=1的右焦點為F,右準(zhǔn)線為l,點A∈l,線段AF交C于點B,若 = 3 ,則||等于       

    A、            B、2         C、           D、3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:選擇題

已知橢圓C: + y2=1的右焦點為F,右準(zhǔn)線為l,點A∈l,線段AF交C于點B,若 = 3 ,則||等于       

    A、            B、2         C、           D、3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省宣城市寧國中學(xué)高二(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知橢圓C:+y2=1及定點A(2,0),點P是橢圓上的動點,則|PA|的最小值為( )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省梅州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且=0.求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣西柳州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且=0.求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案