2.設(shè)p:|4x-3|≤1,q:(x-a)(x-a-1)≤0,若?p是?q的必要不充分條件,則實(shí)數(shù)a的取值范圍是[0,$\frac{1}{2}$].

分析 分別求出關(guān)于p,q的不等式,根據(jù)充分必要條件結(jié)合集合的包含關(guān)系得到關(guān)于a的不等式組,解出即可.

解答 解:由|4x-3|≤1,解得:$\frac{1}{2}$≤x≤1,
故p:$\frac{1}{2}$≤x≤1,
由(x-a)(x-a-1)≤0,解得:a≤x≤a+1,
故q:a≤x≤a+1;
若?p是?q的必要不充分條件,
即q是p的必要不充分條件,
則p?q,
則$\left\{\begin{array}{l}{\frac{1}{2}≥a}\\{1≤a+1}\end{array}\right.$,解得:0≤a≤$\frac{1}{2}$,
故答案為:$[{0,\frac{1}{2}}]$.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.y=sin(2x+φ)(0<φ<π)為偶函數(shù),則其單調(diào)遞減區(qū)間為[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線(xiàn)2x-3y+1=0的兩側(cè),給出下列命題:
①2a-3b+1>0;   ②a≠0時(shí),$\frac{a}$有最小值,無(wú)最大值;
③存在正實(shí)數(shù)m,使得$\sqrt{{a}^{2}+^{2}}$>m恒成立;
④a>0且a≠1,b>0時(shí),則$\frac{a-1}$的取值范圍是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正確的命題是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)$f(x)=\frac{3cosx+1}{2-cosx}(-\frac{π}{3}<x<\frac{π}{3})$,則f(x)的值域?yàn)?(\frac{5}{3},4]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=sin(2x+φ)(其中0<φ<π)滿(mǎn)足f(-x)=f(x),則( 。
A.f(x)在$(0,\frac{π}{2})$單調(diào)遞減B.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減
C.f(x)在$(0,\frac{π}{2})$單調(diào)遞增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①雙曲線(xiàn)$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A,B為兩個(gè)定點(diǎn),P為動(dòng)點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-x+1=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④已知P是雙曲線(xiàn)$\frac{x^2}{64}-\frac{y^2}{36}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),若|PF1|=17,則|PF2|的值為33.
其中真命題的序號(hào)為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱(chēng),z1=2+ai,z1z2=-4,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=sinx+cos2x的值域是[-2,$\frac{9}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若A(1,0),B(0,-1),則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案