已知函數(shù)f(x)=
3
sin(ωx+?)-cos(ωx+?)(0<?<π,ω>0)
,
(Ⅰ)若函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
π
2
,且它的圖象過(guò)(0,1)點(diǎn),求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)將(Ⅰ)中的函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若f(x)的圖象在x∈(a,a+
1
100
) (a∈R)
上至少出現(xiàn)一個(gè)最高點(diǎn)或最低點(diǎn),則正整數(shù)ω的最小值為多少?
(Ⅰ)f(x)=
3
sin(ωx+?)-cos(ωx+?)

=2[
3
2
sin(ωx+?)-
1
2
cos(ωx+?)]

=2sin(ωx+?-
π
6
)
(3分)
由題意得
ω
=2×
π
2
,所以ω=2所以f(x)=2sin(2x+?-
π
6
)

又因?yàn)閥=f(x)的圖象過(guò)點(diǎn)(0,1),
sin(?-
π
6
)=
1
2

又∵0<φ<π
?=
π
3

f(x)=2sin(2x+
π
6
)
(6分)
(Ⅱ)將f(x)的圖象向右平移
π
6
個(gè)單位后,得到y=2sin(2x-
π
6
)
的圖象,
再將所得圖象橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到y=2sin(
1
2
x-
π
6
)
的圖象.
g(x)═2sin(
1
2
x-
π
6
)
(9分)
2kπ-
π
2
1
2
x-
π
6
≤2kπ+
π
2
,則4kπ-
3
≤x≤4kπ+
3

∴g(x)的單調(diào)遞增區(qū)間為[4kπ-
3
,4kπ+
3
] (k∈Z)
.(12分)
(Ⅲ)若f(x)的圖象在x∈(a,a+
1
100
) (a∈R)
上至少出現(xiàn)一個(gè)最高點(diǎn)或
最低點(diǎn),則
π
ω
1
100
,即ω>100π,又ω為正整數(shù),
∴ωmin=315.(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿(mǎn)足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過(guò)點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過(guò)怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫(xiě)出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案