A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 令y=0,可得f(x)=$\frac{\sqrt{3}}{3}$x-$\frac{1}{2}$,作出函數y=f(x)的圖象和直線y=$\frac{\sqrt{3}}{3}$x-$\frac{1}{2}$,通過圖象觀察交點的個數,即可得到所求零點的個數.
解答 解:由y=f(x)-$\frac{\sqrt{3}}{3}$x+$\frac{1}{2}$=0,可得:
f(x)=$\frac{\sqrt{3}}{3}$x-$\frac{1}{2}$,
作出函數y=f(x)的圖象和直線y=$\frac{\sqrt{3}}{3}$x-$\frac{1}{2}$,
可得當x=1時,ln1=0;$\frac{\sqrt{3}}{3}$-$\frac{1}{2}$>0,
ln2>$\frac{\sqrt{3}}{3}$×2-$\frac{1}{2}$,
由圖象可得y=f(x)的圖象與直線有4個交點.
即函數y=f(x)-$\frac{\sqrt{3}}{3}$x+$\frac{1}{2}$的零點個數為4.
故選:D.
點評 本題考查函數零點的個數的求法,注意運用數形結合的思想方法,作出二次函數和對數函數的圖象和直線是解題的關鍵,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 50$\sqrt{2}$ m | B. | 50$\sqrt{3}$ m | C. | 25$\sqrt{2}$ m | D. | $\frac{25\sqrt{2}}{2}$ m |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 與x軸、y軸都相交 | B. | 與x軸相交,與y軸不相交 | ||
C. | 與x軸不相交,與y軸相交 | D. | 與x軸、y軸都不相交 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值-3 | B. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值3 | ||
C. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值-3 | D. | ${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com