直線y=kx+b與曲線y=ax2+2+lnx相切于點(diǎn)P(1,4),則b的值為( 。
分析:把切點(diǎn)P的坐標(biāo)代入y=ax2+2+lnx求出a,再求函數(shù)導(dǎo)數(shù)并求出k,再把P(1,4)代入y=kx+b求b.
解答:解:∵點(diǎn)P(1,4)在曲線y=ax2+2+lnx上,
∴a+2=4,解得a=2,
由題意得,y′=2ax+
1
x
=4x+
1
x
,
∴在點(diǎn)P(1,4)處的切線斜率k=5,
把P(1,4)代入y=kx+b,得b=-1,
故選C.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義,某點(diǎn)處的切線的斜率是該點(diǎn)處的導(dǎo)數(shù)值,及切點(diǎn)在曲線上和切線上的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:貴州省遵義四中2010屆高三畢業(yè)班第四次月考、文科數(shù)學(xué)試卷 題型:013

若直線y=kx與曲y=x3-3x2+2x相切,則k的值為

[  ]
A.

或2

B.

或-2

C.

2

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線C:數(shù)學(xué)公式的虛軸長(zhǎng)為2數(shù)學(xué)公式,漸近線方程是y=數(shù)學(xué)公式,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且數(shù)學(xué)公式
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線C:的虛軸長(zhǎng)為2,漸近線方程是y=,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案