1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\\{\;}\end{array}\right.$,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)是偶函數(shù)B.函數(shù)f(x)在[0,$\frac{π}{2}$]上單調(diào)遞增
C.函數(shù)f(x)是周期為π的周期函數(shù)D.函數(shù)f(x)的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$]

分析 作出y=sinx和y=cosx的圖象,然后取這兩個(gè)圖象中靠下方的圖象即為該分段函數(shù)的圖象,利用函數(shù)圖象即可逐一判斷各個(gè)選項(xiàng),從而得解.

解答 解:作出y=sinx和y=cosx的圖象,然后取這兩個(gè)圖象中靠下方的圖象即為該分段函數(shù)的圖象.
對(duì)于A,從圖象中可以看出,函數(shù)f(x)不是偶函數(shù),故錯(cuò)誤;
對(duì)于B,從圖象中可以看出,函數(shù)f(x)在[0,$\frac{π}{2}$]上不單調(diào)遞增,故錯(cuò)誤;
對(duì)于C,從圖象中可以看出,函數(shù)f(x)是周期為2π的周期函數(shù),故錯(cuò)誤;
對(duì)于D,從圖象中可以看出,函數(shù)f(x)的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$],故正確.
故選:D

點(diǎn)評(píng) 本題主要考查了正弦函數(shù),余弦函數(shù)的圖象和性質(zhì)的應(yīng)用,正確根據(jù)函數(shù)解析式得到分段函數(shù)的圖象及性質(zhì)是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且Sn=2an-1.
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期為π,給出下列四個(gè)命題:
(1)f(x)的最大值為3;
(2)將f(x)的圖象向左平移$\frac{π}{3}$后所得的函數(shù)是偶函數(shù);
(3)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增;
(4)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱.
其中正確說(shuō)法的序號(hào)是( 。
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),(an-Sn-12=SnSn-1,且a1=1,設(shè)bn=log2$\frac{{a}_{n+1}}{3}$,則b1+b2+…+bn=n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某單位從包括甲、乙在內(nèi)的5名應(yīng)聘者中招聘2人,如果這5名應(yīng)聘者被錄用的機(jī)會(huì)均等,則甲、乙兩人中至少有1人被錄用的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.($\sqrt{2x}$-$\frac{1}{x}$)9的二項(xiàng)式展開式中常數(shù)項(xiàng)的二項(xiàng)式系數(shù)為84(用符號(hào)或數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某高校進(jìn)行自主招生測(cè)試,報(bào)考學(xué)生有500人,其中男生300人,女生200人,為了研究學(xué)生的成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們測(cè)試的分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成4組:[70,90),[90,110),[110,130),[130,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖可以估計(jì)女生測(cè)試成績(jī)的平均值為103.5,請(qǐng)你估計(jì)男生測(cè)試成績(jī)的平均值,由此推斷男、女生測(cè)試成績(jī)的平均水平的高低;
(Ⅱ)若規(guī)定分?jǐn)?shù)不小于110分的學(xué)生為“優(yōu)秀生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“優(yōu)秀生與性別有關(guān)”?
優(yōu)秀生非優(yōu)秀生合計(jì)
男生
女生
合計(jì)
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某市要進(jìn)行城市環(huán)境建設(shè),要把一個(gè)三角形的區(qū)域改造成街心花園,經(jīng)過(guò)測(cè)量得到這個(gè)三角形區(qū)域的三條邊分別為56米、72米和112米,問(wèn)這個(gè)區(qū)域的面積是多少?(精確到0.1平方米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{ln(x+1)}{x}$.
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex-1)ln(x+1)>x2

查看答案和解析>>

同步練習(xí)冊(cè)答案