(2008•佛山二模)已知某幾何體的俯視圖是如圖所示的邊長為2的正方形,主視圖與左視圖是邊長為2的正三角形,則其表面積是( 。
分析:由已知可得該幾何體是一個底面邊長為2,側(cè)高為2的正四棱錐,代入公式求出底面面積和側(cè)面積,可得幾何體的表面積.
解答:解:由已知中幾何體的俯視圖是如圖所示的邊長為2的正方形,
主視圖與左視圖是邊長為2的正三角形,
可得該幾何體是一個底面邊長為2,側(cè)高為2的正四棱錐
故其表面積S=2×2+4•(
1
2
×2×2)=12
故選B
點評:本題考查的知識點是由三視圖求表面積,其中根據(jù)已知判斷出幾何體的形狀及底面邊長,側(cè)面的高等幾何量是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的圖象上一個最高點的坐標為(
π
12
,3)
,與之相鄰的一個最低點的坐標為(
12
,-1)

(Ⅰ)求f(x)的表達式;
(Ⅱ)求f(x)在x=
π
6
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)已知函數(shù)f(x)的自變量的取值區(qū)間為A,若其值域區(qū)間也為A,則稱A為f(x)的保值區(qū)間.
(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;
(2)函數(shù)g(x)=|1-
1x
|(x>0)
是否存在形如[a,b](a<b)的保值區(qū)間?若存在,求出實數(shù)a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)已知正項等差數(shù)列{an}的前n項和為Sn,其中a1≠a2,am、ak、ah都是數(shù)列{an}中滿足ah-ak=ak-am的任意項.
(Ⅰ)證明:m+h=2k;
(Ⅱ)證明:Sm•Sh≤Sk2
(III)若
Sm
、
Sk
、
Sh
也成等差數(shù)列,且a1=2,求數(shù)列{
1
Sn-S1
}(n∈N*,n≥3)
的前n項和Tn
5
24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
,
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)已知A為xOy平面內(nèi)的一個區(qū)域.
命題甲:點(a,b)∈{(x,y)|
0≤x≤π
0≤y≤sinx
;命題乙:點(a,b)∈A.如果甲是乙的充分條件,那么區(qū)域A的面積的最小值是( 。

查看答案和解析>>

同步練習冊答案