(08年十校聯(lián)考) (12分) 在直三棱柱中,
(1)求證:
(2)求二面角的大;
(3)求點
科目:高中數(shù)學(xué) 來源: 題型:
(08年十校聯(lián)考) (12分) 把圓周分成四等份,是其中一個分點,動點在四個分點上按逆時針方向前進,F(xiàn)在投擲一個質(zhì)地均勻的正四面體,它的四個面上分別寫有1、2、3、4四個數(shù)字。點出發(fā),按照正四面體底面上數(shù)字前進幾個分點,轉(zhuǎn)一周之前連續(xù)投擲。
(1)求點恰好返回點的概率;
(2)在點轉(zhuǎn)一周恰能返回點的所有結(jié)果中,用隨即變量表示點能返回點的投擲次數(shù),求的分數(shù)列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年十校聯(lián)考)(12分) 定義在上的函 的圖像在處的切線平行與直線。
(1)求函數(shù)的解析式及極值;
(2)設(shè),求不等式的解集;
(3)對任意
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年十校聯(lián)考) (14分) 已知二次函數(shù)同時滿足:⑴不等式的解集有且只有一個元素;⑵在定義域內(nèi)存在,使得不等式成立。設(shè)數(shù)列的前
(1)求數(shù)列的通項公式;
(2)設(shè)
(3)設(shè)各項均不為零的數(shù)列中,所有滿足這個數(shù)列的變號數(shù)。另
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年十校聯(lián)考) (14分) 已知點
(1)求軌跡E的方程;
(2)若直線過點且與軌跡交于兩點,
①無論直線繞點怎樣轉(zhuǎn)動,在軸上總存在定點,使恒成立,求實數(shù)的值;
②過作直線的垂線,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com