曲線y=x3-2x2+4x+5在x=1處的切線方程是( 。
分析:根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=-1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫出切線方程即可.
解答:解:y'=3x2-4x+4
∴y'|x=1=3
而切點(diǎn)坐標(biāo)為(1,8),斜率為3
∴曲線y=x3+2x2-2x-1在x=1處的切線方程為y-8=3(x-1)即3x-y+5=0
故選D.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及考查運(yùn)算求解能力、推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、曲線y=x3-2x2-4x+2在點(diǎn)(1,-3)處的切線方程是
5x+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)原點(diǎn)向曲線y=x3+2x2+a可作三條切線,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=x3-2x2+5,則在該曲線上,以下哪個(gè)點(diǎn)處切線的傾斜角最大( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3-2x2-x+4在點(diǎn)A(1,2)的切線方程為
2x+y-4=0
2x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3-2x2-4x+2在點(diǎn)(1,-3)處的切線的斜率是
-5
-5

查看答案和解析>>

同步練習(xí)冊(cè)答案