【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱.

(1)不等式對(duì)任意恒成立,求實(shí)數(shù)的最大值;

(2)設(shè)內(nèi)的實(shí)根為, ,若在區(qū)間上存在,證明: .

【答案】(1)1(2)見解析

【解析】試題分析:(1)不等式恒成立問題,一般利用變量分離,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,即的最小值,再利用導(dǎo)數(shù)求出函數(shù)的最小值,即得,因此實(shí)數(shù)的最大值為.(2)先根據(jù)函數(shù)的圖象關(guān)于直線對(duì)稱,求出,再由內(nèi)的實(shí)根為,得等量關(guān)系,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性:在上單調(diào)遞增;在上單調(diào)遞增減,因此, , 為其極大值點(diǎn),根據(jù)極點(diǎn)偏移方法證明:要證: ,即證: ,只要證,即證,構(gòu)造函數(shù),其中.利用導(dǎo)數(shù)可得上單調(diào)遞增,即得

試題解析:(1)由,所以,

設(shè),∴.

,∴, 上單調(diào)遞增;

,∴ 上單調(diào)遞減,所以,即,所以實(shí)數(shù)的最大值為.

(2)設(shè)為函數(shù)圖象上任意一點(diǎn),

則點(diǎn)為函數(shù)圖象上的點(diǎn),所以,所以

當(dāng)時(shí), , ,因而上單調(diào)遞增;

當(dāng)時(shí), , ,因而上單調(diào)遞增減,

,則,

顯然當(dāng)時(shí), .

要證: ,即證: ,而上單調(diào)遞增減,

故可證,又由,即證,

,

,其中.

.

設(shè),當(dāng)時(shí), ; 時(shí), ,

.

,故,而,從而

因此當(dāng),即單調(diào)遞增.

從而當(dāng)時(shí), ,即,故得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,BC的對(duì)邊分別為a,b,c,且2asin Bb

1求角A的大;2a6bc8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017 年省內(nèi)某事業(yè)單位面向社會(huì)公開招騁工作人員,為保證公平競(jìng)爭(zhēng),報(bào)名者需要參加筆試和面試兩部分,且要求筆試成績(jī)必須大于或等于分的才有資格參加面試, 分以下(不含分)則被淘汰,現(xiàn)有名競(jìng)騁者參加筆試,參加筆試的成績(jī)按區(qū)間分段,其頻率分布直方圖如圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為,且筆試成績(jī)?cè)?/span>的人數(shù)為.

(1)根據(jù)頻率分布直方圖,估算競(jìng)騁者參加筆試的平均成績(jī);

(2)若在面試過程中每人最多有次選題答題的機(jī)會(huì),累計(jì)答對(duì)題或答錯(cuò)題, 答對(duì)題者方可參加復(fù)賽,已知面試者甲答對(duì)每一個(gè)問題的概率都相同,并且相互之間沒有影響,若他連續(xù)三次答題中答對(duì)一次的概率為,求面試者甲答題個(gè)數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,定點(diǎn)(常數(shù))的直線與曲線相交于兩點(diǎn).

(1)若點(diǎn)的坐標(biāo)為,求證:

(2)若,以為直徑的圓的位置是否恒過一定點(diǎn)?若存在,求出這個(gè)定點(diǎn),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為梯形, , 平面, , , 中點(diǎn).

(1)求證:平面平面

(2)線段上是否存在一點(diǎn),使平面?若有,請(qǐng)找出具體位置,并進(jìn)行證明:若無(wú),請(qǐng)分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016-2017學(xué)年遼寧省六校協(xié)作體高二下學(xué)期期初數(shù)學(xué)(理)】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線相切.

(1)求直線被圓所截得的弦的長(zhǎng);

(2)過點(diǎn)作兩條與圓相切的直線,切點(diǎn)分別為求直線的方程;

(3)若與直線垂直的直線與圓交于不同的兩點(diǎn),若為鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2013江蘇,理17】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;

(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,邊a、b是方程x2-2x+2=0的兩根,角A、B滿足:2sinA+B)-=0,求角C的度數(shù),邊c的長(zhǎng)度及ABC的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長(zhǎng)方體中, , , 為棱上一點(diǎn),

1,求異面直線所成角的正切值;

2,求證平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案