如圖:在底面邊長為1的正四棱柱ABCD-A1B1C1D1中,P為底面ABCD所在平面內(nèi)一動點,點P到直線BC的距離等于它到直線AA1的距離,則P點的軌跡方程是( )

A.y2=
B.y2=-4
C.x2=y
D.x2=-2y
【答案】分析:先判斷PA表示P到直線AA1的距離,從而可得點P到A的距離等于點P到直線BC的距離,利用拋物線的定義,可求軌跡及方程.
解答:解:由題意,AA1⊥平面ABCD,PA?平面ABCD
∴AA1⊥PA
∴PA表示P到直線AA1的距離
∵點P到直線BC的距離等于它到直線AA1的距離
∴點P到A的距離等于點P到直線BC的距離
∴P點的軌跡為拋物線,
以AB的中點為原點,AB所在直線為x軸或y軸,過原點,在平面ABCD內(nèi)垂直于AB的直線為y軸或x軸
∵底面邊長為1的正四棱柱ABCD-A1B1C1D1
∴拋物線的標準方程可以是:y2=±2x,x2=±2y
故選D.
點評:本題以正四棱柱為載體,考查拋物線的定義,判斷PA表示P到直線AA1的距離是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在底面邊長為1,側棱長為2的正四棱柱ABCD-A1B1C1D1中,P是側棱CC1上的一點,CP=m.
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角為60°;
(Ⅱ)在線段A1C1上是否存在一個定點Q,使得對任意的m,D1Q⊥AP,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:在底面邊長為1的正四棱柱ABCD-A1B1C1D1中,P為底面ABCD所在平面內(nèi)一動點,點P到直線BC的距離等于它到直線AA1的距離,則P點的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(10分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.

(1)試確定m,使直線AP與平面BDD1B1所成角為60º;

(2)在線段上是否存在一個定點,使得對任意的mAP,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省高三下學期期末考試數(shù)學試卷 題型:解答題

(本小題滿分10分)

如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,. (1)試確定m,使直線AP與平面BDD1B1所成角為60º;(2)在線段上是否存在一個定點,使得對任意的m,⊥AP,并證明你的結論.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省高三年級隨堂練習數(shù)學試卷 題型:解答題

必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.

如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.

(1)當時,求直線AP與平面BDD1B1所成角的度數(shù);

(2)在線段上是否存在一個定點,使得對任意的m,⊥AP,并證明你的結論.

 

查看答案和解析>>

同步練習冊答案