(2013•東城區(qū)二模)如圖,AB為⊙O的直徑,AC切⊙O于點(diǎn)A,且過(guò)點(diǎn)C的割線CMN交AB的延長(zhǎng)線于點(diǎn)D,若CM=MN=ND,AC=2
2
,則CM=
2
2
,AD=
2
7
2
7
分析:利用掌握?qǐng)A的切線的性質(zhì)、切割線定理、勾股定理即可得出.
解答:解:∵AC切⊙O于點(diǎn)A,CM=MN,AC=2
2

∴AC2=CM•CN,∴(2
2
)2=2CM2
,∴CM=2.
∴CD=3CM=6.
∵AB為⊙O的直徑,AC切⊙O于點(diǎn)A,∴AC⊥AD.
在Rt△ACD中,由勾股定理可得AD=
CD2-AC2
=
62-(2
2
)2
=2
7

故答案分別為2,2
7
點(diǎn)評(píng):熟練掌握?qǐng)A的切線的性質(zhì)、切割線定理、勾股定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)如果P(x0,y0)是曲線y=f(x)上的任意一點(diǎn),若以P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值;
(3)討論關(guān)于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實(shí)根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)根據(jù)表格中的數(shù)據(jù),可以斷定函數(shù)f(x)=lnx-
3
x
的零點(diǎn)所在的區(qū)間是( 。
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)對(duì)定義域的任意x,若有f(x)=-f(
1
x
)
的函數(shù),我們稱為滿足“翻負(fù)”變換的函數(shù),下列函數(shù):
y=x-
1
x
,
②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿足“翻負(fù)”變換的函數(shù)是
①③
①③
. (寫出所有滿足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關(guān)系是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案