如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABEFD.
(1)求證:BD⊥平面POA;
(2)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2,且,求此時線段PO的長.

【答案】分析:(1)根據(jù)EF⊥AC得PO⊥EF,由平面PEF⊥平面ABEFD結(jié)合面面垂直的性質(zhì)定理,證出PO⊥平面ABEFD,從而得到PO⊥BD.由此結(jié)合AO⊥BD,利用線面垂直判定定理即可證出BD⊥平面POA;
(2)由PO⊥平面ABEFD,得PO是三棱錐P-ABD和四棱錐P-BDEF的高,因此將化簡可得S△ABD=S四邊形BDEF,從而得到S△CEF=S△BCD.最后根據(jù)△CEF∽△CDB,利用面積比等于相似比的平方,結(jié)合菱形ABCD中有關(guān)數(shù)據(jù)即可算出此時線段PO的長等于
解答:解:(1)∵在菱形ABCD中,BD⊥AC,∴AO⊥BD
∵EF⊥AC,∴PO⊥EF
∵平面PEF⊥平面ABEFD,平面PEF∩平面ABEFD=EF,PO?平面PEF
∴PO⊥平面ABEFD,結(jié)合BD?平面ABEFD,可得PO⊥BD
∵AO⊥BD,且AO、PO是平面POA內(nèi)的相交直線
∴BD⊥平面POA;
(2)設(shè)AO、BO相交于點H,由(1)得PO⊥平面ABEFD,
∴PO是三棱錐P-ABD和四棱錐P-BDEF的高
∴V1=S△ABD•PO,V2=S四邊形BDEF•PO,
,可得S△ABD=S四邊形BDEF
∴S四邊形BDEF=S△ABD=S△BCD,可得S△CEF=S△BCD
∵BD⊥AC,EF⊥AC,EF∥BD,∴△CEF∽△CDB,
因此,=,可得CO=CH=AH
∵菱形ABCD中,邊長為4且∠DAB=60°
∴△ABD是邊長為4的正三角形,得AH=×4=2,從而得到CO=×=
∴此時線段PO的長等于
點評:本題給出平面折疊問題,求證BD⊥平面POA,并在已知三棱錐P-ABD體積與四棱錐P-BDEF體積比的情況下求線段PO的長.著重考查了線面垂直的判定與性質(zhì)、錐體的體積公式和運用三角形相似求線段比值等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為4的菱形ABCD中,∠BAD=60°,E為CD的中點,則
AE
BD
的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2.求當(dāng)PB取得最小值時的V1:V2值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別在邊CD,CB上,點E與點C,點D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED

(1)求證:BD⊥平面POA
(2)當(dāng)點O 在何位置時,PB取得最小值?
(3)當(dāng)PB取得最小值時,求四棱錐P-BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別在邊CD,CB上,點E與點C,點D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求證:BD⊥平面POA
(2)設(shè)AO∩BD=H,當(dāng)O為CH中點時,若點Q滿足
AQ
=
QP
,求直線OQ與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABEFD.
(1)求證:BD⊥平面POA;
(2)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2,且
V1
V2
=
4
3
,求此時線段PO的長.

查看答案和解析>>

同步練習(xí)冊答案