某學校為了解高三年級學生寒假期間的學習情況,抽取甲、乙兩班,調(diào)查這兩個班的學生在寒假期間每天平均學習的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數(shù)相同,甲班學生每天平均學習時間在區(qū)間[2,4]的有8人.

(1)求直方圖中a的值及甲班學生每天平均學習時間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個班每天平均學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
考點:離散型隨機變量的期望與方差,頻率分布直方圖,離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:(1)由直方圖能求出a的值及甲班學生每天平均學習時間在區(qū)間(10,12]的人數(shù).
(2)由已知得ξ的所有可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列和數(shù)學期望.
解答: 解:(1)由直方圖知,(0.150+0.125+0.100+0.0875+a)×2=1,
解得a=0.0375,
因為甲班學習時間在區(qū)間[2,4]的有8人,
所以甲班的學生人數(shù)為
8
0.2
=40
,
所以甲、乙兩班人數(shù)均為40人.
所以甲班學習時間在區(qū)間(10,12]的人數(shù)為40×0.0375×2=3(人).
(2)乙班學習時間在區(qū)間(10,12]的人數(shù)為40×0.05×2=4(人).
由(1)知甲班學習時間在區(qū)間(10,12]的人數(shù)為3人,
在兩班中學習時間大于10小時的同學共7人,
ξ的所有可能取值為0,1,2,3.
P(ξ=0)=
C
0
3
C
4
4
C
4
7
=
1
35

P(ξ=1)=
C
1
3
C
3
4
C
4
7
=
12
35
,
P(ξ=2)=
C
2
3
C
2
4
C
4
7
=
18
35

P(ξ=3)=
C
3
3
C
1
4
C
4
7
=
4
35

所以隨機變量ξ的分布列為:
ξ0123
P
1
35
12
35
18
35
4
35
Eξ=0×
1
35
+1×
12
35
+2×
18
35
+3×
4
35
=
12
7
點評:本題考查頻率分布直方圖的應用,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,在歷年高考中都是必考題型之一.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若y=a-bsinx的最大值為
3
2
,最小值為-
1
2
,求y=2asinx+b的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐S-ABCD的底面是邊長為2的正方形,頂點S在底面的射影為正方形的中心O,且SO=4,E是邊BC的中點,動點P在四棱錐的表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為( 。
A、7
2
B、6
2
C、4
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

山水城市鎮(zhèn)江有“三山”--金山、焦山、北固山,一位游客游覽這三個景點的概率都是0.5,且該游客是否游覽這三個景點相互獨立,用ξ表示這位游客游覽的景點數(shù)和沒有游覽的景點數(shù)差的絕對值,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

k2,m(m∈N),3,5的平均數(shù)為3,平面上的直線l過點(0,1),其斜率為等可能取k的值,用X表示坐標原點到l距離的平方,則隨機變量X的數(shù)學期望E(X)等于(  )
A、
103
270
B、
107
270
C、
111
270
D、
119
270

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,向量
a
b
,
c
在由單位長度為1的正方形組成的網(wǎng)格中,則
a
•(
b
+
c
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
 
 
2
(a-2x)+x-2,若f(x)存在零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市居民階梯電價標準如下:第一檔電量(用電量不超過180千瓦時)的電價(簡稱為基礎電價)為0.57元、千瓦時;第二檔電量(超過180千瓦時,不超過400千瓦時)的電價每千瓦時比基礎電價提高0.05元;第三檔電量(400千瓦時以上)的電價每千瓦時比基礎電價提高0.30元(具體見表格).若某月某用戶用電量為x千瓦時,需交費y元.
 用電量(單位:千瓦時)用電價格(單位:元/千瓦時)
第一檔180及以下部分0.57
第二檔超180至400部分0.62
第三檔超400部分0.87
(Ⅰ)求y關于x的函數(shù)關系式;
(Ⅱ)若該用戶某月交電費為115元,求該用戶該月的用電量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某供貨商擬從碼頭A發(fā)貨至其對岸l的兩個商場B,C處,通常貨物先由A處船運至BC之間的中轉(zhuǎn)站D,再利用車輛轉(zhuǎn)運.如圖,碼頭A與兩商場B,C的距離相等,兩商場間的距離為20千米,且∠BAC=
π
2
.若一批貨物從碼頭A
至D處的運費為100元/千米,這批貨到D后需分別發(fā)車2輛、4輛轉(zhuǎn)運至B、C處,每輛汽車運費為25元/千米.設∠ADB=α,該批貨總運費為S元.
(Ⅰ)寫出S關于α的函數(shù)關系式,并指出α的取值范圍;
(Ⅱ)當α為何值時,總運費S最小?并求出S的最小值.

查看答案和解析>>

同步練習冊答案