【題目】如圖,已知正方形ABCD的中心為E(﹣1,0),一邊AB所在的直線方程為x+3y﹣5=0,求其它三邊所在的直線方程.

【答案】解:E到直線x+3y﹣5=0距離是 = ,所以E到另三邊距離也是
有一條邊CD與AB:x+3y﹣5=0平行,設(shè)為x+3y+a=0,則 ,即|a﹣1|=6
∴a=﹣5,a=7 其中a=﹣5就是已知的
∴CD方程為:x+3y+7=0
另兩條和他們垂直,所以斜率為3,設(shè)為:3x﹣y+b=0
,即|b﹣3|=6
∴b=9,b=﹣3
∴AD的方程:3x﹣y﹣3=0;BC的方程:3x﹣y+9=0
【解析】先求正方形中心E(﹣1,0)到直線x+3y﹣5=0的距離,然后設(shè)出所求直線方程,利用正方形的中心到三邊等距離,分別求出所求直線的方程.
【考點精析】認(rèn)真審題,首先需要了解一般式方程(直線的一般式方程:關(guān)于的二元一次方程(A,B不同時為0)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)在線段CF上求一點G,使銳二面角B﹣EG﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為 ,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F(xiàn)分別為PA,PD中點.

(1)求證:EF∥面PBC
(2)求證:平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b均大于0,且 + =1.求證:對于每個n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C與兩平行直線 x﹣y﹣8=0和x﹣y+4=0相切,圓心在直線2x+y﹣10=0上.
(1)求圓C的方程.
(2)過原點O做一條直線,交圓C于M,N兩點,求OM*ON的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,

在此幾何體中,給出下面四個結(jié)論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.

(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一點P,使得BP∥平面AD1E?若存在,求DP的長;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案