如圖,在長方體ABCD-A1B1C1D1中,AB=6,AD=4,AA1=3,分別過BC、A1D1的兩個平行截面將長方體分成三部分,其體積分別記為V1=,V2=,V3=.若V1∶V2∶V3=1∶4∶1,試求截面A1EFD1的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題
(文科做)(本題滿分14分)如圖,在長方體
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點(diǎn)時,求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時,二面角D1—EC-D的大小為.
(理科做)(本題滿分14分)
如圖,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M為側(cè)棱CC1上一點(diǎn),AM⊥BA1.
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求點(diǎn)C到平面ABM的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com