【題目】已知雙曲線E: (a>0,b>0)的右頂點為A,拋物線C:y2=8ax的焦點為F,若在E的漸近線上存在點P使得PA⊥FP,則E的離心率的取值范圍是( )
A.(1,2)
B.(1, ]
C.(2,+∞)
D.[ ,+∞)
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1F2 , 這兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,記橢圓與雙曲線的離心率分別為e1 , e2 , 則e1e2的取值范圍是( )
A.( ,+∞)
B.( ,+∞)
C.( ,+∞)
D.(0,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100]
(1)求頻率分布直方圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60)的受訪職工中,隨機抽取2人,求此2人的評分恰好有一人在[40,50)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=|x﹣a|,a∈R.
(1)當a=1時,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數g(x)=f(x)﹣|x﹣3|的值域為A,且[﹣1,2]A,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】春節(jié)期間商場為活躍節(jié)日氣氛,特舉行“購物有獎”抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,每次中獎可以獲得20元購物代金券,方案乙的中獎率為 ,每次中獎可以獲得30元購物代金券,未中獎則不獲得購物代金券,每次抽獎中獎與否互不影響,已知小明通過購物獲得了2次抽獎機會.
(1)若小明選擇方案甲、乙各抽獎一次,記他累計獲得的購物代金券面額之和為X,求X≤30的概率;
(2)設小明兩次抽獎都選擇方案甲或都選擇方案乙,且都選擇方案乙時,已算得,累計獲得的購物代金券面額之和X1的數學期望E(X1)=24,問:小明選擇這兩種方案中的何種方案抽獎,累計獲得的購物代金券面額之和的數學期望較大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在實數集R中定義一種運算“*”,對任意a,b∈R,a*b為唯一確定的實數,且具有性質:
(Ⅰ)對任意a∈R,a*0=a;
(Ⅱ)對任意Ra,b∈R,a*b=ab+(a*0)+(b*0).
關于函數f(x)=(ex)* 的性質,有如下說法:①函數f(x)的最小值為3;②函數f(x)為偶函數;③函數f(x)的單調遞增區(qū)間為(﹣∞,0].其中所有正確說法的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊只比賽一場),共有高一、高二、高三三個隊參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負獨立,勝者記1分,負者記0分,規(guī)定:積分相同者高年級獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若h(x)的單調減區(qū)間是( ,1),求實數a的值;
(2)若f(x)≥g(x)對于定義域內的任意x恒成立,求實數a的取值范圍;
(3)設h(x)有兩個極值點x1 , x2 , 且x1∈(0, ).若h(x1)﹣h(x2)>m恒成立,求m的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com