拋物線與橢圓的公共弦長為

[  ]

A.1

B.

C.2

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)A(0,4)的直線l與以F為焦點(diǎn)的拋物線C:x2=py相切于點(diǎn)T(-4,yo);中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)為F的橢圓與直線l有公共點(diǎn).
(1)求直線l的方程和焦點(diǎn)F的坐標(biāo);
(2)求當(dāng)橢圓的離心率最大時橢圓的方程;
(3)設(shè)點(diǎn)M(x1,yl)是拋物線C上任意一點(diǎn),D(0,-2)為定點(diǎn),是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線 x2=4y的焦點(diǎn)是橢圓 C:
x2
a2
+
y2
b2
=1(a>b>0)
一個頂點(diǎn),橢圓C的離心率為
3
2
.另有一圓O圓心在坐標(biāo)原點(diǎn),半徑為
a2+b2

(Ⅰ)求橢圓C和圓O的方程;
(Ⅱ)已知過點(diǎn)P(0,
a2+b2
)的直線l與橢圓C在第一象限內(nèi)只有一個公共點(diǎn),求直線l被圓O截得的弦長;
(Ⅲ)已知M(x0,y0)是圓O上任意一點(diǎn),過M點(diǎn)作直線l1,l2,使得l1,l2與橢圓C都只有一個公共點(diǎn),求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線 x2=4y的焦點(diǎn)是橢圓 C:
x2
n2
+
y2
b2
=1(a>b>0)
一個頂點(diǎn),橢圓C的離心率為
3
2
.另有一圓O圓心在坐標(biāo)原點(diǎn),半徑為
a2+b2

(I)求橢圓C和圓O的方程;
(Ⅱ)已知過點(diǎn)P(0,
a2+b2
)的直線l與橢圓C在第一象限內(nèi)只有一個公共點(diǎn),求直線l被圓O截得的弦長;
(Ⅲ)已知M(x0,y0)是圓O上任意一點(diǎn),過M點(diǎn)作直線l1,l2,使得l1,l2與橢圓C都只有一個公共點(diǎn),求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省實(shí)驗(yàn)中學(xué)高三(下)第一次綜合測試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知過點(diǎn)A(0,4)的直線l與以F為焦點(diǎn)的拋物線C:x2=py相切于點(diǎn)T(-4,yo);中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)為F的橢圓與直線l有公共點(diǎn).
(1)求直線l的方程和焦點(diǎn)F的坐標(biāo);
(2)求當(dāng)橢圓的離心率最大時橢圓的方程;
(3)設(shè)點(diǎn)M(x1,yl)是拋物線C上任意一點(diǎn),D(0,-2)為定點(diǎn),是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案