在△ABC中,sin2A-sin2C=(sinA-sinB)sinB,則角C等于( 。
A、
π
6
B、
π
3
C、
6
D、
3
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:由正弦定理把已知條件化簡(jiǎn)得到a,b及c的關(guān)系式,然后利用余弦定理表示出cosC,把求得的關(guān)系式代入即可得到cosC的值,然后根據(jù)C的范圍及特殊角的三角函數(shù)值即可求出C的度數(shù).
解答: 解:∵sin2A-sin2C=(sinA-sinB)sinB,
由正弦定理可得,a2-c2=ab-b2,
由余弦定理可得,cosC=
a2+b2-c2
2ab
=
1
2
,
∴C=
π
3

故選:B.
點(diǎn)評(píng):此題要求學(xué)生靈活運(yùn)用正弦、余弦定理及特殊角的三角函數(shù)值化簡(jiǎn)求值,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù);
(2)若a≥1,用g(a)表示函數(shù)y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x-
π
3
)的圖象為C,下面結(jié)論中正確的是( 。
A、函數(shù)f(x)的最小正周期是2π
B、圖象C關(guān)于點(diǎn)(
π
6
,0)對(duì)稱
C、圖象C可由函數(shù)g(x)=sin2x的圖象向右平移
π
3
個(gè)單位得到
D、函數(shù)f(x)在區(qū)間(-
π
12
π
2
)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a>0,b>0”是“
b
a
+
a
b
≥2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

球的表面積為4π,則球的直徑為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+sinx-cosx
sinx
,求f(x)的最小正周期及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一個(gè)平面截半徑為25cm的球,截面面積是49πcm2,則球心到截面的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與雙曲線
x2
2
-y2=1有相同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(1,2),則sin(π-α)的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案