精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
等邊和梯形所在的平面相互垂直,,,,為棱的中點,∥平面.

(I)求證:平面平面;
(II)求二面角的正弦值.

(I)略
(Ⅱ)
(I)取中點,連接,, ,即四點共面又∥平面,平面,平面
即平面平面                             …………………… 6分
(Ⅱ)……………………………………………………………………………12
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐中,底面,,,的中點.
(1)求證:;
(2)求證:
(3)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
正△的邊長為4,邊上的高,分別是邊的中點,現將△沿翻折成直二面角

(1)試判斷直線與平面的位置關系,并說明理由;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共14分)在四棱錐中,底面是矩形,平面,,. 以的中點為球心、為直徑的球面交于點,交于點.
(1)求證:平面⊥平面;      
(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

((本小題滿分12分)
如圖所示,在棱長為的正方體ABCD—A1B1C1D1中,E、F、H分別是棱BB1、CC1、DD1的中點。


 
(Ⅰ)求證:BH//平面A1EFD1

(Ⅱ)求直線AF與平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是線段A1B的中點.                                       
(1)證明:面⊥平面A1B1BA;
(2)證明:;
(3)求棱柱ABC—A1B1C1被平面分成兩部分
的體積比.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題


三棱錐中,分別是棱的中點,,,,,則異面直線所成的角為                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,正方體中,為棱的中點,則在平面內過點且與直線角的直線有(  )
A.0條B.1條C.2條D.無數條

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分),
如圖,菱形ABCD所在平面與矩形ACEF所在平面互相垂直,已知BD=AF,且點M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)求平面DEF與平面BEF所成的角.

查看答案和解析>>

同步練習冊答案