如圖所示,已知平面上三點(diǎn)A、B、C的坐標(biāo)分別為(-2,1)、(-1,3)、(3,4),求點(diǎn)D的坐標(biāo),使得這四點(diǎn)能構(gòu)成平行四邊形的四個(gè)頂點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年廣東省廣州89中學(xué)高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(必修1、2)(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

同步練習(xí)冊(cè)答案