已知三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=
3
,BC=2,則以BC為棱,以面BCD與面BCA為面的二面角的余弦值為( 。
A.
3
3
B.
1
3
C.0D.-
1
2
取BC中點(diǎn)E,連AE、DE,
∵三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=
3
,BC=2,
∴BC⊥AE,BC⊥DE,
∴∠AED為二面角A-BC-D的平面角
∵AB=AC=
3
,BC=2,
∴AE=ED=
2
,AD=2,∴∠AED=90°,
∴面BCD與面BCA為面的二面角的余弦值為0.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5
3
,那么二面角A-BD-P的大為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使A′B=
3

(1)求證:BA′⊥面A′CD;
(2)求異面直線A′C與BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形ABCD中,AB=3,AD=5,DB=4,以BD為棱把四邊形ABCD折成1200的二面角,則AC的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中點(diǎn),
(1)求銳二面角D-B1E-B的余弦值.
(2)試判斷AC與面DB1E的位置關(guān)系,并說明理由.
(3)設(shè)M是棱AB上一點(diǎn),若M到面DB1E的距離為
21
7
,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點(diǎn),動點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
(Ⅰ)當(dāng)CF=1時,求證:EF⊥A1C;
(Ⅱ)設(shè)二面角C-AF-E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示的等邊△ABC的邊長為2a,CD是AB邊上的高,E、F分別是AC、BC邊的中點(diǎn).現(xiàn)將△ABC沿CD折疊成如圖2所示的直二面角A-DC-B.

(1)試判斷折疊后直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求四面體A-DBC的外接球體積與四棱錐D-ABFE的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
2
,∠ACB=90°,M是AA1的中點(diǎn),N是BC1的中點(diǎn)
(1)求證:MN平面A1B1C1;
(2)求點(diǎn)C1到平面BMC的距離;
(3)求二面角B-C1M-A1的平面角的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三棱柱ABC­A1B1C1的側(cè)棱與底面垂直,體積為,底面是邊長為的正三角形.若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為(  ).
A.  B.C.  D.

查看答案和解析>>

同步練習(xí)冊答案