設集合,如果滿足:對任意,都存在,使得,那么稱為集合的一個聚點,則在下列集合中:(1);(2);(3);(4),以為聚點的集合有 (寫出所有你認為正確的結論的序號).
(2)(3)
【解析】
試題分析:(1)對于某個a<1,比如a=0.5,此時對任意的x∈Z+∪Z-,都有|x-0|=0或者|x-0|≥1,也就是說不可能0<|x-0|<0.5,從而0不是Z+∪Z-的聚點;(2)集合{x|x∈R,x≠0},對任意的a,都存在x=(實際上任意比a小得數(shù)都可以),使得0<|x|=<a,∴0是集合{x|x∈R,x≠0}的聚點;(3)集合中的元素是極限為0的數(shù)列,對于任意的a>0,存在n>,使0<|x|=<a,∴0是集合的聚點;(4)集合中的元素是極限為1的數(shù)列,除了第一項0之外,其余的都至少比0大,∴在a<的時候,不存在滿足得0<|x|<a的x,∴0不是集合的聚點.故答案為(2)(3).
考點:新定義問題,集合元素的性質(zhì),數(shù)列的性質(zhì).
科目:高中數(shù)學 來源:2014屆甘肅天水一中高二下學期期末考試理科數(shù)學試卷(解析版) 題型:填空題
設集合,如果滿足:對任意,都存在,使得,那么稱為集合的一個聚點,則在下列集合中:(1);(2);(3);(4),以為聚點的集合有
(寫出所有你認為正確的結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆甘肅天水一中高二下學期期末考試文科數(shù)學試卷(解析版) 題型:填空題
設集合,如果滿足:對任意,都存在,使得,那么稱為集合的一個聚點,則在下列集合中:(1);(2);(3);(4),以為聚點的集合有
(寫出所有你認為正確的結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年甘肅省天水市高三第三次考試文科數(shù)學試卷(解析版) 題型:填空題
設集合,如果滿足:對任意,都存在,使得,那么稱為集合的一個聚點,則在下列集合中:(1);(2);(3);(4),以為聚點的集合有
(寫出所有你認為正確的結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設集合,如果滿足:對任意,都存在,使得,那么稱為集合的一個聚點,則在下列集合中:(1);(2);(3);
(4),以為聚點的集合有 .
(寫出所有你認為正確的結論的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com