設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程。………………4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求函數(shù)在上的最大值;(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年全國(guó)新課標(biāo)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本小題滿分10分)選修4-5不等選講
設(shè)函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)如果不等式的解集為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆河南鄭州智林學(xué)校高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實(shí)數(shù)的七彩教育網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年河北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求的最大值;
(2)令,(),其圖象上任意一點(diǎn)處切線的斜率≤恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com