已知復(fù)數(shù)z=是實(shí)數(shù),則 sin3θ=( )
A.0
B.
C.1
D.-1
【答案】分析:根據(jù)復(fù)數(shù)三角形式的除法可得復(fù)數(shù)z=cos3θ+isin3θ,再由它是實(shí)數(shù)可得sin3θ=0.
解答:解:復(fù)數(shù)z===cos3θ+isin3θ 為實(shí)數(shù),∴sin3θ=0,
故選A.
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,復(fù)數(shù)三角形式的除法,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z是關(guān)于x的實(shí)系數(shù)一元二次方程x2+mx+25=0的一個(gè)根,同時(shí)復(fù)數(shù)z滿足關(guān)系式|z|+z=8+4i.
(1)求|z|的值及復(fù)數(shù)z;
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z是方程x2+2x+2=0的解,且 Imz>0,若
a
z
+
.
z
=b+i
(其中a、b為實(shí)數(shù),i為虛數(shù)單位,Imz表示z的虛部).求復(fù)數(shù)w=a+bi的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z是方程x2+2x+5=0的解,且Imz<0,若
a
z
+
.
z
=b+i
(其中a、b為實(shí)數(shù),i為虛數(shù)單位,Imz表示z的虛部),求復(fù)數(shù)w=a+bi的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知復(fù)數(shù)z是方程x2+2x+2=0的解,且 Imz>0,若(其中a、b為實(shí)數(shù),i為虛數(shù)單位,Imz表示z的虛部).求復(fù)數(shù)w=a+bi的模.

查看答案和解析>>

同步練習(xí)冊(cè)答案