2.已知三角形ABC的三個(gè)頂點(diǎn)A(6,3),B(9,3),C(3,6),求$\overrightarrow{AB}$•$\overrightarrow{AC}$和∠BAC的大。

分析 由已知三角形三個(gè)頂點(diǎn)的坐標(biāo)求得$\overrightarrow{AB}$、$\overrightarrow{AC}$的坐標(biāo),由數(shù)量積的坐標(biāo)運(yùn)算求得$\overrightarrow{AB}$•$\overrightarrow{AC}$;再由數(shù)量積求夾角公式求得∠BAC的大。

解答 解:∵A(6,3),B(9,3),C(3,6),
∴$\overrightarrow{AB}=(3,0),\overrightarrow{AC}=(-3,3)$,∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=-9;
又$|\overrightarrow{AB}|=3,|\overrightarrow{AC}|=\sqrt{(-3)^{2}+{3}^{2}}=3\sqrt{2}$,
∴$cos∠BAC=\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=\frac{-9}{3×3\sqrt{2}}=-\frac{\sqrt{2}}{2}$.
∴∠BAC=135°.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=4x的準(zhǔn)線與雙曲線4x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)交于A、B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若△FAB為直角三角形,則雙曲線離心率為( 。
A.$\frac{\sqrt{17}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\frac{\sqrt{57}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,如果輸入的n是3,那么輸出的p是( 。
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{24}$D.$\frac{1}{120}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=(x+10)6,求fm(2)、f(6)(2)、及f(20)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí),f(x)=log2(-x+1)
(1)求f(0),f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)>1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$cos(\frac{π}{2}+φ)=\frac{3}{5}$,且$|φ|<\frac{π}{2}$,則tanφ為(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)是同一函數(shù)的是( 。
A.y=$\frac{2x}{x}$與y=2B.y=$\sqrt{{x}^{2}}$與y=($\sqrt{x}$)2C.y=lgx2與y=2lgxD.y=$\frac{{x}^{2}}{x}$與y=x(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)為B(0,b),右焦點(diǎn)為F,直線BF與橢圓的另一個(gè)交點(diǎn)為M,且|$\overrightarrow{BF}$|=2|$\overrightarrow{FM}$|,則該橢圓離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在極坐標(biāo)系中,已知曲線C1與C2的極坐標(biāo)方程分別為ρ=2sinθ與ρcosθ=-1(0≤θ<2π).求:
(1)兩曲線(含直線)的公共點(diǎn)P的極坐標(biāo);
(2)過點(diǎn)P被曲線C1截得弦長(zhǎng)為$\sqrt{2}$的直線極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案