【題目】已知點(diǎn)P(4,2)是直線l被橢圓 所截得的線段的中點(diǎn),
(1)求直線l的方程
(2)求直線l被橢圓截得的弦長.
【答案】
(1)解:設(shè)直線l的方程為:y﹣2=k(x﹣4),交點(diǎn)A(x1,y1),B(x2,y2).
聯(lián)立 ,化為:(1+4k2)x2+8k(2﹣4k)x+4(2﹣4k)2﹣36=0.(*)
∴x1+x2= =8,解得k=﹣
∴直線l的方程為:x+2y﹣8=0
(2)解:把k=﹣ 代入方程(*)可得:x2﹣8x+14=0,
∴x1+x2=8,x1x2=14.
∴|AB|= = =
【解析】(1)設(shè)直線l的方程為:y﹣2=k(x﹣4),交點(diǎn)A(x1 , y1),B(x2 , y2).與橢圓方程聯(lián)立化為關(guān)于x的一元二次方程,再利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式即可得出.(2)利用弦長公式即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a﹣c= b,sinB= sinC.
(1)求cosA的值;
(2)求cos(A+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)y=kx+1在R上是增函數(shù),命題q:x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是( )
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2﹣ (x>0),若存在實(shí)數(shù)m、n(m<n)使f(x)在區(qū)間(m,n)上的值域?yàn)椋╰m,tn),則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn) 且斜率為k的直線l與橢圓 有兩個不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量 與 共線?如果存在,求k值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com