精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知橢圓 的左、右焦點分別為,,短軸的兩端點分別為,線段,的中點分別為,,且四邊形是面積為8的矩形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過作直線交橢圓于兩點,若,求直線的方程.

【答案】(1); (2) .

【解析】

(I)通過矩形的面積和對角線長相等列方程組,結合,解得的值,從而求得橢圓方程.(II)當直線的斜率不存在時,直接得出直線的方程,代入橢圓方程求得兩點的坐標,代入驗證出不符合題意.當直線的斜率存在時,設出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出韋達定理,將坐標代入,解方程求得直線的斜率,由此求得直線的方程.

(I)在矩形中,

所以四邊形是正方形,所以

∴橢圓C的方程為

(II)由(I)可知,

1)當直線l的斜率不存在時,l的方程為x=-2,

l:x=-2不滿足題意.

2)當l的斜率為k時,設l的方程為,

綜上所述,直線l的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為,,橢圓的長軸長與焦距之比為,過的直線交于,兩點.

(1)當的斜率為時,求的面積;

(2)當線段的垂直平分線在軸上的截距最小時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標系與參數方程

在直接坐標系中,直線l的方程為x-y+4=0,曲線C的參數方程為.

I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;

II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x),當年產量不足80千件時,C(x)x210x(萬元).當年產量不小于80千件時,C(x)51x1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.

1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數解析式;

2)當年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,E,F分別為A1C1BC的中點,M,N分別為A1BA1C的中點.求證:

1MN∥平面ABC;

2EF∥平面AA1B1B.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過點A(﹣1,3),B(3,3)兩點,且圓心C在直線xy+10上.

(1)求圓C的方程;

(2)求經過圓上一點A(﹣1,3)的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】4件產品中,有一等品2件,二等品1件(一等品與二等品都是正品),次品1件,現(xiàn)從中任取2件,則下列說法正確的是(

A.兩件都是一等品的概率是

B.兩件中有1件是次品的概率是

C.兩件都是正品的概率是

D.兩件中至少有1件是一等品的概率是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生09之間取整數值的隨機數,指定1,23,4表示命中,56,78,90,表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

同步練習冊答案