(本題滿分12分)
設(shè)函數(shù),,是的一個(gè)極大值點(diǎn).
(Ⅰ)若,求的取值范圍;
(Ⅱ) 當(dāng)是給定的實(shí)常數(shù),設(shè)是的3個(gè)極值點(diǎn),問是否存在實(shí)數(shù),可找到,使得的某種排列(其中=)依次成等差數(shù)列?若存在,求所有的及相應(yīng)的;若不存在,說明理由.
解析:本題主要考查函數(shù)極值的概念、導(dǎo)數(shù)運(yùn)算法則、導(dǎo)數(shù)應(yīng)用及等差數(shù)列等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力、分類討論等綜合解題能力和創(chuàng)新意識(shí).
(Ⅰ)解:時(shí),,
,
令,,
設(shè)是的兩個(gè)根,
(1)當(dāng)或時(shí),則不是極值點(diǎn),不合題意;
(2)當(dāng)且時(shí),由于是的極大值點(diǎn),故
,即,
(Ⅱ)解:,
令,
,
于是,假設(shè)是的兩個(gè)實(shí)根,且
由(Ⅰ)可知,必有,且是的三個(gè)極值點(diǎn),
則,
假設(shè)存在及滿足題意,
(1)當(dāng)?shù)炔顣r(shí),即時(shí),
則或,
于是,即
此時(shí)
或
(2)當(dāng)時(shí),則或
①若,則,
于是,
即
兩邊平方得,
于是,
此時(shí),
此時(shí)=
②若,則,
于是,
即
兩邊平方得,
于是,
此時(shí)
此時(shí)
綜上所述,存在b滿足題意,
當(dāng)b=-a-3時(shí),,
時(shí),,
時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com