已知{an}是等差數(shù)列,a2=5,a5=14.
(I)求{an}的通項(xiàng)公式;
(II)設(shè){an}的前n項(xiàng)和Sn=155,求n的值.
分析:(1)先求出兩個(gè)基本量a1,d,再求出通項(xiàng)公式.
(2)由Sn的公式,求出n即可.
解答:(Ⅰ)解:設(shè)等差數(shù)列{an}的公差為d,
a1+d=5,
 a1+4d=14,

解得a1=2,d=3.
所以數(shù)列{an}的通項(xiàng)為an=a1+(n-1)d=3n-1.
(Ⅱ)解:數(shù)列{an}的前n項(xiàng)和Sn
n(a1+
a
 
n
)
2
=
3
2
n2+
1
2
n

3
2
n2+
1
2
n=155,
 化簡(jiǎn)得3n2+n-310=0,

即(3n+31)(n-10)=0;
∴n=10.
點(diǎn)評(píng):等差數(shù)列里,已知兩個(gè)基本量a1,d,可表示出其他的量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù){an}的前n項(xiàng)和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案