已知Sn=1+2+3+…+n,,則f(n)的最大值是    
【答案】分析:先求出Sn=,從而得到f(n)=.然后用均值不等式求出其最終結(jié)果.
解答:解:∵Sn=1+2+3+…+n=,,
∴f(n)===
點評:本題考查數(shù)列的極限的求法,解題時要認真審題,仔細解答,注意均值不等式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Sn=1+2+3+…+n,f(n)=
Sn(n+32)Sn+1
(n∈N*)
,則f(n)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
,n∈N*
,則S10=
10
11
10
11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:Sn=1-2+3-4+5-6+…+(-1)n+1•n.求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知Sn=1+2+3+…+n,數(shù)學公式,則f(n)的最大值是 ________.

查看答案和解析>>

同步練習冊答案