已知實(shí)數(shù)a、b、c滿足a-b-c=0則原點(diǎn)O(0,0)到直線ax+by+c=0的距離的最大值為
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:空間位置關(guān)系與距離
分析:根據(jù)直線方程和a-b-c=0,得直線過定點(diǎn)(-1,1),所以原點(diǎn)O(0,0)到直線ax+by+c=0的距離的最大值即為原點(diǎn)到定點(diǎn)的距離.
解答: 解:因?yàn)橹本ax+by+c=0,又a-b-c=0,
所以直線過定點(diǎn)(-1,1),
所以原點(diǎn)O(0,0)到直線ax+by+c=0的距離的最大值即為原點(diǎn)到定點(diǎn)的距離:
2

故答案為:
2
點(diǎn)評:本題主要考查點(diǎn)到直線的距離公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
x3-
a
2
x2
+(3-a)x+b有三個不同的單調(diào)區(qū)間,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與直線y=1,直線x=5分別交于P,Q兩點(diǎn),PQ中點(diǎn)為M(1,-1),則直線l的斜率是(  )
A、-
1
2
B、
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=x相同的函數(shù)是( 。
A、y=
x2
x
B、y=
x2
C、y=lnex
D、y=2log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x-  
1
2
,x>0
-2,x=0
(x+3)
1
2
,x<0
且b=f(f(f(0))),若y=xa2-4a-b是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),則整數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng),等差數(shù)列{bn}的前n項(xiàng)和為{Sn},s4=20,b4=a3
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<b<a<1,則下列不等式成立的是( 。
A、ab<b2<1
B、a2<b2
C、2b<2a<2
D、a2<ab<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為sn,若a2=2,a3=4,則s4=( 。
A、15B、14C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:|4x-3|≤1,q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案