精英家教網 > 高中數學 > 題目詳情
已知sinx+siny=
13
,則siny-cos2x的最大值為
 
分析:由題意得siny=
1
3
-sinx,且-1≤
1
3
-sinx≤1,得到sinx的取值范圍,把所求的式子配方利用二次函數的性質求出其最大值.
解答:解:∵sinx+siny=
1
3
,∴siny=
1
3
-sinx,∵-1≤
1
3
-sinx≤1,∴-
2
3
≤sinx≤1,
∴siny-cos2x=
1
3
-sinx-(1-sin2x)
=(sinx-
1
2
)
2
-
11
12
,∴sinx=-
2
3
 時,siny-cos2x的最大值為   (-
2
3
-
1
2
)
2
-
11
12
=
4
9
,
故答案為
4
9
點評:本題考查同角三角函數的基本關系,正弦函數的有界性,二次函數的性質,求sinx的取值范圍是易錯點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知sinx+sinα=
13
,求關于x的函數y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinx=sinα+cosα,cosx=sinαcosα,則cos2x=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinx=sinθ+cosθ,cosx=sinθcosθ,則cos52x=(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知sinx+sinα=
1
3
,求關于x的函數y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省濟南外國語學校高一(下)期中數學試卷(解析版) 題型:解答題

已知sinx+sinα=,求關于x的函數y=1+sinx+sin2α的最值.

查看答案和解析>>

同步練習冊答案