已知向量
a
b
的夾角為120°,且|
a
|=1,|
b
|=2,則向量
a
-
b
在向量
a
+
b
方向上的投影是______.
|
a
+
b
|2=
a
2
+2
a
b
+
b
2
=1+2|
a
||
b
|
cos120°+4=3,
所以|
a
+
b
|=
3

|
a
-
b
|2=
a
2
-2
a
b
+
b
2
=1-2×1×2cos120°+4=7,
所以|
a
-
b
|=
7

則cos<
a
-
b
,
a
+
b
>=
(
a
-
b
)•(
a
+
b
)
|
a
-
b
||
a
+
b
|
=
1-4
3
×
7
=-
21
7

所以向量
a
-
b
在向量
a
+
b
方向上的投影是|
a
-
b
|cos<
a
-
b
,
a
+
b
=
7
×(-
21
7
)
=-
3
,
故答案為:-
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
的夾角為
π
3
,|
a
|=
2
,則
a
b
方向上的投影為( 。
A、
3
B、
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
、
b
的夾角為45°,且|
a
|=4,(
1
2
a
+
b
)•(2
a
-3
b
)=12,則|
b
|=
 
;
b
a
上的投影等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
的夾角為120°,且|
a
|=|
b
|=4
,那么
b
•(2
a
+
b
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•煙臺二模)已知向量
a
,
b
的夾角為120°,|
a
|=|
b
|=1.
c
a
+
b
共線,|
a
+
c
|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)二模)已知向量
a
b
的夾角為120°,|
a
|=2
,且(2
a
+
b
)⊥
a
,則|
b
|
=________( 。

查看答案和解析>>

同步練習冊答案