【題目】如圖,四棱錐中,⊥平面,底面為正方形,的中點,.

(1)求證:;

(2)邊上是否存在一點,使得//平面?若存在,求的長,若不存在,請說明理由.

【答案】(1)見解析;(2)23.

【解析】分析:(1)要證明需證,需證:,用分析法書寫即可。

(2)連結(jié)AC,取AC中點O,連結(jié)EO,GO,延長GOAD于點M,則PA∥平面MEG,再求解

詳解:(Ⅰ)證明:∵PD⊥平面ACD,∴PDBC

又∵ABCD是正方形∴BCCD

PDCD=D

BC⊥平面PCD

又∵PCPBC

PCBC

(2)連結(jié)AC,取AC中點O,連結(jié)EO,GO,延長GOAD于點M,則PA∥平面MEG

下面證明之

EPC的中點,OAC的中點,

EOPA,

又∵EO平面MEG,PA平面MEG

PA∥平面MEG

在正方形ABCD中,∵OAC的中點,∴△OCG≌△OAM,

AM=CG=23,∴所求AM的長為23.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格P(元)和時間t(天)(t∈N)的關(guān)系如圖所示

(1)寫出銷售價格P(元)和時間t(天)的函數(shù)解析式;
(2)若日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系是Q=﹣t+40(0≤t≤30,t∈N),求該商品的日銷售金額y(元)與時間t(天)的函數(shù)解析式;
(3)問該產(chǎn)品投放市場第幾天時,日銷售金額最高?最高值為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)某學校為了支持生物課程基地研究植物生長,計劃利用學?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為(m),三塊種植植物的矩形區(qū)域的總面積(m2).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的首項a1a(a∈R).設(shè)數(shù)列的前n項和為Sn,且,,成等比數(shù)列.

(1)求數(shù)列{an}的通項公式及Sn;

(2),.n≥2時,求AnBn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下命題:

(1)若;,則為真,為假,為真

(2)“”是“曲線表示橢圓”的充要條件

(3)命題“若,則”的否命題為:“若,則

(4)如果將一組數(shù)據(jù)中的每一個數(shù)都加上同一個非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變;

則正確命題有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 且滿足S17>0,S18<0,則 , ,…, 中最大的項為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, .

(Ⅰ)證明:

(Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi),定點A,B,C,D滿足| |=| |=| |,| || |=| || |=| || |=﹣4,動點P,M滿足| |=2, = ,則| |的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.

(1){an}的通項公式;

(2)a1+a4+a7+…+a3n2.

查看答案和解析>>

同步練習冊答案