15.已知復(fù)數(shù)z滿足i=z(1-i),其中i為虛數(shù)單位,則復(fù)數(shù)$\overline z$所對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:$z=\frac{i}{1-i}=\frac{i(1+i)}{(1-i)(1+i)}=\frac{-1+i}{2}$,
∴$\overline z=\frac{-1}{2}-\frac{i}{2}$,對應(yīng)點(diǎn)為$(-\frac{1}{2},-\frac{1}{2})$,在第三象限.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,AB=8,AC=6,AD垂直BC于點(diǎn)D,E,F(xiàn)分別為AB,AC的中點(diǎn),若$\overrightarrow{DE}$•$\overrightarrow{DF}$=6,則BC=(  )
A.2$\sqrt{13}$B.10C.2$\sqrt{37}$D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,若輸出的n的值為5,則輸入的T的最大值為( 。
A.108B.76C.61D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N).記Sn=a1+a2+…+an.Tn=$\frac{1}{{1+{a_1}}}$+$\frac{1}{{(1+{a_1})(1+{a_2})}}$+…+$\frac{1}{{(1+{a_1})(1+{a_2})…(1+{a_n})}}$.求證:當(dāng)n∈N*時(shí)
(Ⅰ)0≤an<an+1<1;
(Ⅱ)Sn>n-2;
(Ⅲ)Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若(x+$\frac{1}{x}$+1)n的展開式中各項(xiàng)的系數(shù)之和為81,則分別在區(qū)間[0,π]和[0,$\frac{n}{4}$]內(nèi)任取兩個(gè)實(shí)數(shù)x,y,滿足y>sinx的概率為( 。
A.1-$\frac{1}{π}$B.1-$\frac{2}{π}$C.1-$\frac{3}{π}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=2sinωxcos(ωx+$\frac{π}{3}$)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{2}$,要得到函數(shù)y=cos(2x+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向右平移$\frac{π}{2}$個(gè)單位B.向左平移$\frac{π}{2}$個(gè)單位
C.向右平移$\frac{π}{4}$個(gè)單位D.向左平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在ABC中,a、b、c分別是角A,B,C的對邊,c=2,sin2A+sin2B-sin2C=sinAsinB
(Ⅰ)求角C的取值;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知F1,F(xiàn)2分別是雙曲線3x2-5y2=75的左焦點(diǎn)和右焦點(diǎn),P是雙曲線上的一點(diǎn),且∠F1PF2=60°,求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:填空題

設(shè)函數(shù)的導(dǎo)數(shù)為,且,則

查看答案和解析>>

同步練習(xí)冊答案