已知點(diǎn)P(-1,1),點(diǎn)Q(2,4)是曲線y=x2上的兩點(diǎn),求與直線PQ平行的曲線y=x2的切線方程.

答案:
解析:

  解:=(x2=2x,設(shè)切點(diǎn)坐標(biāo)為M(x0,y0),則

  當(dāng)x=x0時(shí),切線斜率k=2x0,因?yàn)镻Q的斜率為=1.又切線平行于直線PQ,所以k=2x0=1,即x0

  所以切點(diǎn)M().

  所求切線方程為,即4x-4y-1=0.


提示:

本題是已知斜率求點(diǎn)的坐標(biāo)的問題.可先設(shè)出點(diǎn)的坐標(biāo),再代入方程求得切線方程.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(-1,1)和點(diǎn)Q(2,2),若直線l:x+my+m=0與線段PQ不相交,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x),當(dāng)x≤0時(shí),f(x)=3e-x
(1)求f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)求最大整數(shù)m(m>1),使得存在實(shí)數(shù)t,對任意x∈[1,m],都有f(x+t)≤3ex.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1,-1)落在角θ的終邊上,則sinθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點(diǎn),其中F1也是拋物線C2x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點(diǎn)P(1,3)和圓O:x2+y2=b2,過點(diǎn)P的動(dòng)直線l與圓O相交于不同的兩點(diǎn)A,B,在線段AB上取一點(diǎn)Q,滿足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求證:點(diǎn)Q總在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案