已知△ABC中,sin2A=sin2B+sin2C且b•cosB-c•cosC=0,則△ABC為( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等邊三角形
【答案】分析:由正弦定理分別化簡(jiǎn)化簡(jiǎn)已知的兩等式,由第一個(gè)等式的化簡(jiǎn)結(jié)果,根據(jù)勾股定理得逆定理得到三角形ABC為直角三角形;由第二個(gè)等式利用二倍角的正弦函數(shù)公式化簡(jiǎn),得到三角形ABC為等腰三角形或直角三角形,綜上,得到三角形ABC為直角三角形.
解答:解:由正弦定理化簡(jiǎn)sin2A=sin2B+sin2C得:a2=b2+c2,
∴△ABC為直角三角形;
又根據(jù)正弦定理化簡(jiǎn)b•cosB-c•cosC=0得:sinBcosB=sinCcosC,
即sin2B=sin2C,又B和C為銳角,
∴B=C或B+C=90°,即△ABC為等腰三角形或直角三角形,
綜上,△ABC為直角三角形.
故選A
點(diǎn)評(píng):此題考查了三角形的形狀判斷,正弦定理及二倍角的正弦函數(shù)公式.其中勾股定理得逆定理是判斷直角三角形的一種方法.利用正弦定理化簡(jiǎn)已知的兩等式是本題的突破點(diǎn).