已知函數(shù),且,給出下列命題:
①;
②;
③;
④當(dāng)時(shí),.
其中所有正確命題的序號為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年豫晉冀高三上學(xué)期第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知雙曲線 的一條漸近線與圓 相變于A.B兩點(diǎn),若,則該雙曲線的離心率為( )
A.8 B. C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省宜賓市高三第一次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
拋物線的焦點(diǎn)坐標(biāo)是( )
(A)(0,1) (B)(0,-1) (C)(-1,0) (D) (1,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省宜賓市高三第一次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,且過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是( )
(A)
(B)
(C)或
(D)或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省高三一診模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)在平面直角坐標(biāo)系中,橢圓過點(diǎn)和點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn)在橢圓上,為橢圓的左焦點(diǎn),直線的方程為.
(i)求證:直線與橢圓有唯一的公共點(diǎn);
(ii)若點(diǎn)關(guān)于直線的對稱點(diǎn)為,探索:當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),直線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省高三一診模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)對定義域內(nèi)的任意都有,且當(dāng)時(shí),其導(dǎo)函數(shù)
滿足,若,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省高三一診模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)是( )
A.最小正周期為的奇函數(shù)
B.最小正周期為的偶函數(shù)
C.最小正周期為的奇函數(shù)
D.最小正周期為的偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省高三一診模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
定義某種運(yùn)算,的運(yùn)算原理如圖所示,設(shè),,則輸出的的最大值與最小值的差為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省連云港、徐州、淮安、宿遷四市高三一?荚囄目茢(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)如圖,有一個(gè)長方形地塊ABCD,邊AB為2km, AD為4 km.,地塊的一角是濕地(圖中陰影部分),其邊緣線AC是以直線AD為對稱軸,以A為頂點(diǎn)的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線AC上一點(diǎn)P的直線型隔離帶EF,E,F(xiàn)分別在邊AB,BC上(隔離帶不能穿越濕地,且占地面積忽略不計(jì)).設(shè)點(diǎn)P到邊AD的距離為t(單位:km),△BEF的面積為S(單位: ).
(1)求S關(guān)于t的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)是否存在點(diǎn)P,使隔離出的△BEF面積S超過3 ?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com