精英家教網 > 高中數學 > 題目詳情

數列{an}的前n項和為Sn,已知數學公式,且對任意正整數m,n都有am+n=am•an,若Sn<a恒成立,則實數a的取值范圍是


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
A
分析:由am+n=am•an,分別令m和n等于1和1或2和1,由a1求出數列的各項,發(fā)現(xiàn)此數列是首項和公比都為的等比數列,利用等比數列的前n項和的公式表示出Sn,而Sn<a恒成立即n趨于正無窮時,求出Sn的極限小于等于a,求出極限列出關于a的不等式,即可得到a的最小值.
解答:令m=1,n=1,得到a2=a12=,同理令m=2,n=1,得到a3=,…
所以此數列是首項為,公比也為的等比數列,故此數列是無窮遞縮等比數列,
則Sn==(1-),要使Sn<a恒成立,需≤a,
所以,a≥(1-)=,∴a≥,
故選A.
點評:此題考查了等比數列關系的確定,掌握不等式恒成立時所滿足的條件,靈活運用等比數列的前n項和的公式及會進行極限的運算,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的公比q≠1,Sn表示數列{an}的前n項的和,Tn表示數列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

若數列{an}的通項an=
1
pn-q
,實數p,q滿足p>q>0且p>1,sn為數列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數列;
(2)若數列{bn}滿足b1=2,bn+1=2an+bn,求數列{bn}的通項公式bn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•商丘二模)數列{an}的前n項和為Sn,若數列{an}的各項按如下規(guī)律排列:
1
2
,
1
3
2
3
,
1
4
2
4
,
3
4
1
5
,
2
5
,
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結論:
①a24=
3
8
;
②數列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數列;
③數列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結論是
①③④
①③④
.(將你認為正確的結論序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①若數列{an}的前n項和Sn=2n+1,則數列{an}為等比數列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設函數f(x)=x|x-a|+b,則函數f(x)為奇函數的充要條件是a2+b2=0;
④設直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案