已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)在[m,m+1]上的最小值;
(Ⅲ)求證:對任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤e.
(Ⅰ)f'(x)=aex+(ax-2)ex=(ax+a-2)ex,
由已知得f'(1)=0,即(2a-2)e=0,
解得:a=1,
驗證知,當a=1時,在x=1處函數(shù)f(x)=(x-2)ex取得極小值,所以a=1;
(Ⅱ)f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex
x (-∞,1) 1 (1,+∞)
f'(x) - 0 +
f(x)
所以函數(shù)f(x)在(-∞,1)上遞減,在(1,+∞)上遞增.
當m≥1時,f(x)在[m,m+1]上單調(diào)遞增,fmin(x)=f(m)=(m-2)em
當0<m<1時,m<1<m+1,f(x)在[m,1]上單調(diào)遞減,在[1,m+1]上單調(diào)遞增,fmin(x)=f(1)=-e.
當m≤0時,m+1≤1,f(x)在[m,m+1]單調(diào)遞減,fmin(x)=f(m+1)=(m-1)em+1
綜上,f(x)在[m,m+1]上的最小值fmin(x)=
(m-2)em,m≥1
-e,0<m<1
(m-1)em+1,m≤0

(Ⅲ)由(Ⅰ)知f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex
令f'(x)=0得x=1,
因為f(0)=-2,f(1)=-e,f(2)=0,
所以fmax(x)=0,fmin(x)=-e,
所以,對任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤fmax(x)-fmin(x)=e,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案