【題目】是坐標原點,橢圓的左右焦點分別為,點在橢圓上,若的面積最大時且最大面積為.

1)求橢圓的標準方程;

2)直線與橢圓在第一象限交于點,點是第四象限內(nèi)的點且在橢圓上,線段被直線垂直平分,直線與橢圓交于另一點,求證:.

【答案】(1);

(2)證明見解析.

【解析】

1)由的面積最大時且最大面積為求得,再結(jié)合即可求出橢圓的標準方程;(2)易知,設(shè)直線,則直線,然后分別與聯(lián)立求出,再利用斜率公式得出的值即可.

1)當(dāng)是橢圓的上頂點或下頂點時的面積最大,設(shè)是橢圓的上頂點,

,

∴橢圓的標準方程為.

2)依題意點的坐標為,直線不與垂直,設(shè)直線,

,直線,即,

設(shè),,

,

,∴,

.

,,

,∴,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)不需證明,直接寫出的奇偶性:

(Ⅱ)討論的單調(diào)性,并證明有且僅有兩個零點:

(Ⅲ)設(shè)的一個零點,證明曲線在點處的切線也是曲線的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且對一切正整數(shù)都有.

1)求證:

2)求數(shù)列的通項公式;

3)是否存在實數(shù),使不等式,對一切正整數(shù)都成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和圓,為橢圓的左、右焦點,點在橢圓上,當(dāng)直線與圓相切時,

I)求的方程;

)直線與橢圓和圓都相切,切點分別為、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.

1)求曲線的普通方程和極坐標方程;

2)設(shè)直線與曲線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)當(dāng)時,判斷直線與曲線的位置關(guān)系;

2)若直線與曲線相交所得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當(dāng)時,,若有三個零點,則實數(shù)的取值集合是(

A.,B.

C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

同步練習(xí)冊答案