已知美國(guó)蘋果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬(wàn)只并全部銷售完,每萬(wàn)只的銷售收入為R(x)萬(wàn)美元,且R(x)=
(1)寫出年利潤(rùn)W(萬(wàn)美元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),蘋果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知當(dāng)x=5時(shí),二次函數(shù)f(x)=ax2+bx取得最小值,等差數(shù)列{an}的前n項(xiàng)和Sn=f(n),a2=-7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某廠擬在2014年通過(guò)廣告促銷活動(dòng)推銷產(chǎn)品.經(jīng)調(diào)查測(cè)算,產(chǎn)品的年銷售量(假定年產(chǎn)量=年銷售量)萬(wàn)件與年廣告費(fèi)用萬(wàn)元滿足關(guān)系式:(為常數(shù)).若不做廣告,則產(chǎn)品的年銷售量恰好為1萬(wàn)件.已知2014年生產(chǎn)該產(chǎn)品時(shí),該廠需要先固定投入8萬(wàn)元,并且預(yù)計(jì)生產(chǎn)每1萬(wàn)件該產(chǎn)品時(shí),需再投入4萬(wàn)元,每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品所需的年平均成本的1.5倍(每件產(chǎn)品的成本包括固定投入和生產(chǎn)再投入兩部分,不包括廣告促銷費(fèi)用).
(1)將2014年該廠的年銷售利潤(rùn)(萬(wàn)元)表示為年廣告促銷費(fèi)用(萬(wàn)元)的函數(shù);
(2)2014年廣告促銷費(fèi)用投入多少萬(wàn)元時(shí),該廠將獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù)a≠0,函數(shù)f(x)=
(1) 若a=-3,求f(10),f(f(10))的值;
(2) 若f(1-a)=f(1+a),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a·+.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.
(1)某廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(2)某廠商要求包裝盒容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c圖象的頂點(diǎn)為(-1,10),且方程ax2+bx+c=0的兩根的平方和為12,求二次函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ex,x∈R.
(1)若直線y=kx+1與f(x)的反函數(shù)的圖像相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com