將正方形ABCD沿對(duì)角線BD折成直二面角,有如下四個(gè)結(jié)論:

①AC⊥BD;②是等邊三角形;③所成的角為;④與平面的角。

其中正確的結(jié)論的序號(hào)是

 

【答案】

①②③

【解析】

試題分析:根據(jù)已知中正方形ABCD沿對(duì)角線BD折成直二面角,我們以O(shè)點(diǎn)為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,求出ABCD各點(diǎn)坐標(biāo)后,進(jìn)而可以求出相關(guān)直線的方向向量及平面的法向量,然后代入線線夾角,線面夾角公式,及模長公式,分別計(jì)算即可得到答案.解:連接AC與BD交于O點(diǎn),對(duì)折后如圖所示,令OC=1

則O(0,0,0),A(1,0,0),B(0,1,0),C(0,0,1),D(0,-1,0)可知向量AC垂直與向量BD,故可知①正確,同時(shí)利用兩點(diǎn)的距離公式得到AD=DC=CA,故該三角形是等邊三角形,成立,對(duì)于所成的角為;根據(jù)向量的夾角公式得到成立,而與平面的角。故填寫①②③

考點(diǎn):空間中直線與平面之間的位置關(guān)系

點(diǎn)評(píng):本題以平面圖形的翻折為載體,考查空間中直線與平面之間的位置關(guān)系,根據(jù)已知條件構(gòu)造空間坐標(biāo)系,將空間線線夾角,線面夾角轉(zhuǎn)化為向量的夾角問題是解題的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福州一中高三數(shù)學(xué)模擬試卷(一)(文科) 題型:013

邊長為1的正方形ABCD沿對(duì)其角線BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線BC與平面ABD所成角的正弦值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

將邊長為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

將邊長為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將邊長為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案