若點(diǎn)P(x,y)坐標(biāo)滿足ln|
1
y
|=|x-1|,則點(diǎn)P的軌跡圖象大致是( 。
分析:取特殊點(diǎn)代入進(jìn)行驗(yàn)證即可.
解答:解:由題意,x=1時(shí),y=1,故排除C,D;令x=2,則y=±
1
e
,排除A.
故選B.
點(diǎn)評(píng):本題考查曲線與方程,考查學(xué)生分析解決問(wèn)題的能力,代入驗(yàn)證是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(θ)=
3
sinθ+cosθ
,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(Ⅰ)若點(diǎn)P的坐標(biāo)為(
1
2
,
3
2
)
,求f(θ)的值;
(Ⅱ)若點(diǎn)P(x,y)為平面區(qū)域Ω:
x+y≥1
x≤1
y≤1
上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,0)、B(1,1)、C(2,0),若點(diǎn)P(x,y)是△ABC邊上的動(dòng)點(diǎn),則x+2y最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,-1),若點(diǎn)P(x,y)為平面區(qū)域
x-2≤0
y-1≤0
x+2y-2≥0
上的一個(gè)動(dòng)點(diǎn),則
OA
OP
的最小值是
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案